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A B S T R A C T   

Objectives: To assess the influence of dental fillings on the performance of an artificial intelligence (AI)-driven 
tool for tooth segmentation on cone-beam computed tomography (CBCT) according to the type of tooth. 
Methods: A total of 175 CBCT scans (500 teeth) were recruited for performing training (140 CBCT scans - 400 
teeth) and validation (35 CBCT scans - 100 teeth) of the AI convolutional neural networks. The test dataset 
involved 74 CBCT scans (226 teeth), which was further divided into control and experimental groups depending 
on the presence of dental filling: without filling (control group: 24 CBCT scans – 113 teeth) and with coronal 
and/or root filling (experimental group: 50 CBCT scans – 113 teeth). The segmentation performance for both 
groups was assessed. Additionally, 10% of each tooth type (anterior, premolar, and molar) was randomly 
selected for time analysis according to manual, AI-based and refined-AI segmentation methods. 
Results: The presence of fillings significantly influenced the segmentation performance (p<0.05). However, the 
accuracy metrics showed an excellent range of values for both control (95% Hausdorff Distance (95% HD): 
0.01–0.08 mm; Intersection over union (IoU): 0.97–0.99; Dice similarity coefficient (DSC): 0.98–0.99; Precision: 
1.00; Recall: 0.97–0.99; Accuracy: 1.00) and experimental groups (95% HD: 0.17–0.25 mm; IoU: 0.91–0.95; DSC: 
0.95–0.97; Precision:1.00; Recall: 0.91–0.95; Accuracy: 0.99–1.00). The time analysis showed that the AI-based 
segmentation was significantly faster with a mean time of 29.8 s (p<0.001). 
Conclusions: The proposed AI-driven tool allowed an accurate and time-efficient approach for the segmentation of 
teeth on CBCT images irrespective of the presence of high-density dental filling material and the type of tooth. 
Clinical significance: Tooth segmentation is a challenging and time-consuming task, mainly in the presence of 
artifacts generated by dental filling material. The proposed AI-driven tool could offer a clinically acceptable 
approach for tooth segmentation, to be applied in the digital dental workflows considering its time efficiency and 
high accuracy regardless of the presence of dental fillings.   

1. Introduction 

The conventional dentistry workflows are being constantly replaced 

by digital workflows due to the incorporation of several computer- 
controlled tools, such as cone-beam computed tomography (CBCT), 
computer-aided-design/computer-assisted-manufacturing (CAD/CAM), 
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three-dimensional (3D) printing, dynamic navigation and other 
advanced prototyping methodologies. All disciplines of dentistry have 
benefitted from these technological advancements and improved the 
efficiency of the oral healthcare system by offering a precise diagnosis, 
patient-specific treatment planning and follow-up evaluation [1]. 

One of the most critical steps in the digital dental workflows is the 
segmentation of teeth on CBCT images, which is a prerequisite for 
ensuring a correct diagnosis of tooth-related diseases and accurate vir
tual treatment planning [2–5]. This step is most commonly performed 
by semi- or fully-automatic processes that require selecting a thresh
olding of gray values of the voxels that better encompass the region of 
interest [6,7]. However, these threshold-based approaches are prone to 
certain limitations which might significantly impact the accuracy of 
tooth segmentation, such as inability to distinguish tooth root from 
alveolar bone due to the presence of similar intensity profile, sensitivity 
to image noise, human performance variability depending on the op
erator’s expertise and requirement of manual corrections which can be 
laborious and time-consuming. Furthermore, gray values thresholding is 
unreliable in the presence of artifacts generated by high-density dental 
materials, such as coronal fillings, metal posts and root fillings, due to 
higher variability of gray values at the region closest to the artifact 
generating material [4,7,8]. 

Recent advancements in the field of artificial intelligence (AI) have 
allowed the inclusion of innovative tools in the digital dental practice to 
overcome the inherent limitations associated with the classical tooth 
segmentation techniques [1,2-5]. The availability of modern 
data-intensive computational resources and data availability have 
heavily contributed to developing robust deep learning models through 
the application of artificial neural networks inspired by the biological 
neural network of a human brain [9,10]. Convolutional neural network 
(CNN), a robust type of deep learning algorithm, has shown significant 
potential for the automated segmentation of pharyngeal airway [11], 
mandibular bone [9], and teeth [2,4,5,12,13]. 

Previous studies have reported the use of CNNs for performing 
automatic individual tooth segmentation from CBCT images with high 
accuracy [4,5,12,13]. However, a lack of evidence exists concerning the 
performance of these CNNs for the automated segmentation of teeth 
restored with coronal and/or root fillings. Thus, the influence of artifacts 
generated by high-density restorative materials on the performance of 
CNNs should be considered as the majority of patients do not offer a 
pristine dentition. Furthermore, the time required for performing seg
mentation has also received less attention, which is a key deciding factor 
for the clinical applicability of these networks. 

Therefore, the aim of the present study was to assess the influence of 
dental fillings and the type of tooth on the performance of a CNN-based 
tool for automatic tooth segmentation on CBCT images. 

2. Materials and methods 

This study was conducted in compliance with the World Medical 
Association Declaration of Helsinki on medical research. Ethical 
approval was obtained from the Local Institutional Ethics Board (refer
ence number: B322201525552). Informed consent was not required as 
patient-specific information was anonymized. 

2.1. Dataset 

A total of 175 CBCT scans (500 teeth) were recruited for training 
(140 CBCT scans - 400 teeth) and validation (35 CBCT scans - 100 teeth) 
of the AI networks. The teeth were randomly selected and belonged to 
all teeth groups (incisor, canine, premolar, and molars). The scans were 
obtained from the Hospital database, which were acquired for dental 
implant planning, third molars evaluation, endodontic treatment follow- 
up, and CBCT-guided tooth autotransplantation. The CBCT imaging 
devices consisted of NewTom VGi Evo (Cefla, Imola, Italy) and 3D 
Accuitomo 170 (J Morita, Kyoto, Japan) with different scanning 

parameters: 110 kilovoltage peak (kVp), 3 – 20 miliampere (mA), field 
of view (FOV): 8 × 8, 10 × 10, 12 × 8, 16 × 16 and 24 × 19 cm, voxel 
size: 0.125 – 0.300 mm3 for the NewTom VGi EVO and 90 kVp, 5 mA, 
FOV: 8 × 8, 10 × 10, 14 × 10, and 17 × 12 cm, voxel size: 0.125 – 0.250 
mm3 for the 3D Accuitomo. The inclusion criteria consisted of patients 
aged 18 years or older, presence of complete and unrestored permanent 
dentition or small edentulous zones (up to two consecutive missing 
teeth), and teeth with coronal and/or root filling. Exclusion criteria were 
large edentulous areas (more than two successive missing teeth), large 
amount of metal artifacts due to the presence of dental implants and/or 
brackets, and motion artifacts. 

The test dataset involved 74 CBCT scans (226 teeth), which was 
further divided into a control and experimental group depending on the 
presence of dental filling: without filling (control group: 24 CBCT scans – 
113 teeth) and with coronal and/or root filling (experimental group: 50 
CBCT scans – 113 teeth). Both groups were composed by maxillary and 
mandibular teeth. The influence of dental fillings on the automated 
segmentation was assessed by comparing the segmentation accuracy of 
the control and experimental group. Each group was formed based on 
the similar number and type of tooth group, i.e. 33 anterior teeth, 40 
premolars, and 40 molars (n = 113 per group). The control group 
included CBCT scans with a complete and unrestored natural dentition. 
On the other hand, the experimental group (Table 1) consisted of CBCT 
scans with at least one tooth restored with coronal filling (amalgam and 
composite restorations) and/or root filling (endodontic treatment with 
or without metal post). To avoid synergism of artifacts produced by 
different teeth selected in the same scan, these teeth were selected from 
different sextants and teeth types. The flowchart of the complete dataset 
distribution is summarized in Fig. 1. 

The ground-truth was generated using a previously validated AI 
tooth segmentation tool [4,5], where the operator firstly imported the 
CBCT dataset and determined the region of interest of the tooth to be 
segmented. Thereafter, the tool generated the 3D borders and contours 
were manually adjusted, if needed [14]. All segmentations were per
formed by a single expert and later verified by another expert. 

2.2. AI architecture 

The AI architecture has been previously described by Shaheen et al 
[5]., which was further developed by a software company (Relu, Leuven, 
Belgium) [15]. The tooth segmentation pipeline consisted of multiple 
configured 3D U-Net network architectures [16]. As described in a 
previous study, the networks worked at different spatial resolutions with 
variable subtasks to create a high-resolution multi-class teeth segmen
tation [5]. 

To summarize, a two-step approach was used to perform the seg
mentation of each tooth since the convolutional deep neural networks 
have limitations regarding the use of large images (e.g. full FOV CBCT 
image). The first step was worked by combining U-net models to 

Table 1 
Sample characterization of the experimental group according to the type of 
filling within each type of tooth.  

Types of filling Type of tooth 
Anterior 

(n) 
Premolars 

(n) 
Molars 

(n) 

Only coronal filling in the proximal tooth 
surface 

11 5 6 

Only coronal filling in the occlusal tooth 
surface 

NA 9 10 

Coronal filling in multiples tooth surfaces 
(more than one surface restored) 

12 15 15 

Coronal filling + root filling (without 
metal post) 

5 6 4 

Coronal filling + root filling (with metal 
post) 

5 5 5 

NA, not applicable; n, number of teeth. 
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perform a rough segmentation and classify the different tooth instances. 
These models are made such that they can handle various types of FOVs. 
In the second step, a combination of U-net models was used to refine the 
rough tooth segmentation to produce a full-resolution tooth segmenta
tion Fig. 2. summarizes the workflow to perform the automatic tooth 

segmentation. 
The models were implemented in PyTorch and optimized with Adam 

optimization for decreasing the learning rate and early stopping on the 
validation set. In addition, random spatial augmentations techniques 
were also applied, such as rotation, scaling and elastic deformation. 

Fig. 1. Flowchart of the dataset used for the training, validation and testing of the AI-driven tool.  

Fig. 2. Workflow of the multiple 3D U-net networks for automated tooth segmentation.  
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The AI model is available on an online cloud-based platform, the 
Virtual Patient Creator platform (Relu, Leuven, Belgium) [15]. This 
user-interactive platform is specialized to perform automated segmen
tation of craniomaxillofacial structures (maxilla, mandible, teeth, 
pharyngeal airway space, and maxillary sinus) from CBCT scans. 
Furthermore, access to the platform is granted following registration by 
the users. 

2.3. Automated tooth segmentation 

The automated AI-driven segmentation of teeth was performed using 
the Virtual Patient Creator platform. Following import of the CBCT 
image to the online platform in Digital Imaging and Communications in 
Medicine (DICOM) format, a segmentation map and the 3D model of 
each tool was automatically generated in Standard Triangle Language 
(STL) format. Additionally, the AI tool also provided the time in seconds 
needed to obtain the final segmented model. 

2.4. Refinement of the automated tooth segmentation 

The refinement of the automated tooth segmentation was performed 
by one expert (RCF) with an experience of over 5 years in oral and 
maxillofacial radiology. First, the expert evaluated the need for refine
ment using a binary scale: 0 (no refinement needed) and 1 (refinement 
needed). In cases where refinements were required, these were per
formed by the same user on the aforementioned online platform, which 
offered different tools such as brush (adding or removing voxels) and 
smart brush (grouping voxels based on their intensity) for the correction 
of potential mistakes in the automated segmentation. Following initial 
refinement, the platform provided a refined AI (R-AI) segmentation map 
with a 3D model of each tooth in STL format. The time spent for per
forming manual refinements was recorded with a digital stopwatch. 
Intra-observer agreement for the time duration required for the refine
ment task was assessed by refining 30% of the teeth twice at a period of 
30 days. 

For the assessment of the intra-examiner agreement, thirty days after 
the refinements were performed, the same expert re-evaluated 30% of 
the sample of teeth (n = 80) regarding the need for refinements. 

2.5. Validation metrics 

The AI and R-AI automatic segmentation maps were compared and 
evaluated using a confusion matrix. Four variables were obtained from 
the voxel-wise comparison: 

a) False positive (FP): voxels included in the segmentation map ob
tained from automated segmentation, but removed by the examiners 
after refinement.  

b) False negative (FN): voxels not included in the segmentation map 
obtained after automated segmentation, but included by the exam
iners after refinement.  

c) True positive (TP): voxels that should be segmented and correctly 
included in the final segmentation map.  

d) True negative (TN): voxels that should not be segmented and thus 
not included in the final segmentation map. 

Based on these variables, the following metrics were utilized for 
assessing the accuracy of automated segmentation:  

a) 95% Hausdorff Distance (HD): Represents the 95 percentile of the 
maximum distance from a point in the segmentation map from the 
CNN model to its closest point in the segmentation map obtained 
after the refinement of the automated segmentation. The aim of 
using the 95 percentile of the HD is to eliminate a subset of outliers. 

P95

(

min
g∈G

‖ p − g||2Umin
p∈p

‖ g − p||2

)

b) Intersection over union (IoU): Represents the degree of overlap be
tween the segmentation map obtained from the CNN model and the 
segmentation map obtained after the refinement of the automated 
segmentation. An IoU of 1 means a perfect segmentation. 

IoU =
TP

TP + FP + FN   

c) Dice similarity coefficient (DSC): Represents the amount of inter
section between the AI and R-AI segmentation maps. A DSC of 1 
means a perfect segmentation. 

DSC =
2 × IoU
1 + IoU    

d) Precision: Represents the fraction of correctly identified voxels 
among all the voxels considered as belonging to the tooth by CNN. 

Precision =
TP

TP + FP    

e) Recall: Represents the rate of voxels that belonged to the tooth and 
was ideally identified by the CNN model. 

Recall =
TP

TP + FN    

f) Accuracy: This ratio represents the rate of voxels that were correctly 
detected (TP and TN) among all voxels observed. 

Accutacy =
TP + TN

TP + TN + FP + FN   

2.6. Timing analysis 

The time duration was compared amongst manual, AI, and R-AI 
methods of tooth segmentation. A sample of 10% (n = 27) of teeth was 
randomly selected and segmented using the previously described online 
platform for assessing the timing of each approach: 

a) Manual method: One expert (RCF) performed the manual segmen
tation using the online platform. The time duration was recorded 
with a digital stopwatch from CBCT data import till the generation of 
a segmentation map. All teeth were segmented twice at a period for 
30 days for assessing the intra-operator reliability of the following 
metrics: 95% HD, IoU, precision, recall, and accuracy.  

b) AI method: The online platform automatically provided the time 
required for obtaining the final segmentation map.  

c) R-AI method: The time needed to perform the refinement was 
recorded and added to the time taken by the AI method. 

2.7. Quality of the automated segmentation analysis 

Based on the overall mean time consumed for performing the auto
mated segmentation (157 s) and amount of adjustments required for the 
refinement process, the automated segmentation was graded into three 
classes: no correction, minor correction, and major correction, where: 
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a) No corrections: No adjustments were needed to the automated 
segmentation.  

b) Minor correction: The time needed for refinement was less than the 
overall mean time (< 157 s).  

c) Major correction: The time needed for refinement was more than the 
overall mean time (> 157 s). 

A qualitative visual analysis was also performed for assessing under- 
and/or over-estimation of the automated segmentation by overlapping 
the STL files of the AI and R-AI segmented teeth in MeVisLab software 
(MeVis Research, Bremen, Germany). Fig. 3. illustrates the comparison 
between the AI and R-AI segmentation maps of teeth belonging to both 
control and experimental group. The reproducibility of the analysis was 
assessed by re-evaluating 30% of the sample at a period of 30 days. 

2.8. Statistical analysis 

Data were analyzed using SPSS v.24.0 (IBM Corp., Armonk, NY, 
USA). Intra-Class Correlation Coefficient (ICC) and weighted Kappa 
were applied for assessing the intra-observer agreement of the quanti
tative and qualitative variables, respectively. The descriptive analysis of 
data concerning the need for refinement was represented by absolute (n) 
and relative (%) frequency of the teeth that required correction 
following segmentation within each tested group (control and experi
mental) and each group of teeth (anterior, premolars and molars). The 
normality of the data was assessed with the Shapiro-Wilk test and the 
accuracy metrics were represented by mean and standard deviation (SD) 
values. 

A two-way analysis of variance (ANOVA) with post-hoc Tukey test 
was applied to compare the mean values of each accuracy metric for 
assessing the effect of the studied factors (presence of filling and tooth 
group) and their interactions. Also, two-way ANOVA was applied to 
compare the mean values of the time duration to perform the tooth 
segmentation according to the segmentation method within each type of 
tooth. Finally, chi-square test was applied to evaluate the association 
between the groups tested and the type of tooth with the amount of 
corrections and the type of refinement needed. All analyses were per
formed with a significance level of 5% (α = 0.05). For each statistical 
test, the power analysis was measured considering the minimum 

difference between groups, their standard deviation, and the number of 
teeth within each group for ANOVA, and considering the chi-square 
value and the degree of freedom for chi-square test, which achieved a 
statistical power ranging from 70% to 99%. 

3. Results 

The manual segmentation demonstrated optimal values for all ac
curacy metrics, thereby indicating that the expert was optimally cali
brated (95% HD - 0.27 mm, IoU – 0.92, DSC – 0.96; Precision – 0.95, 
Recall – 0.96, and Accuracy – 1.00). The ICC for the time required to 
perform both manual segmentation and refinements was 0.97. In addi
tion, the intra-examiner agreements for the need for refinements on the 
automatic segmentation (weighted Kappa=0.92) and the qualitative 
visual estimation of the automated segmentation were almost perfect 
(weighted Kappa=0.86) [17]. 

Table 2 shows the frequency of teeth that required refinement 
following automated AI-driven segmentation based on the control and 
experimental groups and type of tooth. In the control group, molars 
required significantly more refinement than the anterior and premolars 
(p = 0.001). Whereas, the experimental group showed no significant 
difference amongst the type of tooth (p = 0.08). However, a higher 
percentage of teeth with fillings (81.8% of anterior, 57.5% of premolars, 
and 67.5% of molars teeth) required refinements. 

Apart from the precision, all accuracy metrics of the automated 
segmentation showed a significant difference between the control and 
experimental groups (p<0.05). The control group had a lower 95% HD 
value and higher IoU, DSC, recall and accuracy values compared to the 
experimental group. Based on the effect of the tooth type within each 
group, none of the accuracy metrics showed a significant difference 
(p>0.05). However, anterior teeth in the experimental group showed 
higher 95% HD and lower IoU, DSC, and recall values compared to 
premolars and molars (Table 3). 

Fig. 4 exhibits the time required by each segmentation technique 
(manual, AI, R-AI) according to the type of tooth group. The AI-driven 
segmentation showed the lowest time consumed to complete the tooth 
segmentation than the others methods regardless of the type of tooth 
(p<0.001). The type of tooth did not influence the time for AI- 
segmentation (p>0.05). However, the time consumed to perform the 
manual segmentation of molars was significantly higher than for ante
rior and premolars teeth (p<0.001). Additionally, the time consumed for 
AI-R segmentation of molars was significantly higher than for anterior 
teeth (p<0.001), but not significantly different than for premolars 
(p>0.05). 

Fig. 5A illustrates the grading of the automated segmentation based 
on the amount of required corrections, where a time of 157 s acted as the 
cut-off value for differentiating between minor and major corrections. 
The majority of teeth in the control group required no or minor cor
rections irrespective of the tooth type, whereas, the experimental group 
observed an increased need for refinement of the anterior and premolar 
teeth (p<0.001). However, the correction requirement for molars 
showed an even distribution in both groups. Additionally, under- 
estimation of the segmentation was significantly higher compared to 
over-estimation in both groups (p = 0.02) (Fig. 5B). The errors found in 
the automated segmentation of the experimental group are illustrated in 
Fig. 6. 

4. Discussion 

Based on the hypothesis that the presence of restorative material 
artifacts could reduce the quality of the automated segmentation per
formed by an AI-driven tool, the present study was conducted to validate 
an innovative AI-driven tool for an accurate and time-efficient auto
mated segmentation of teeth with and without dental filling material. 
Our results showed that the present AI-driven tool tested showed high 
accuracy and fast performance to generate 3D tooth models, even in the 

Fig. 3. Automated AI-driven segmentation of teeth without filling (A-C) and 
with filling (D-F). A and D – Cropped sagittal views of upper lateral incisors on 
CBCT images; B and E – three-dimensional models acquired from the AI-driven 
tool; C and F – Comparison of the AI segmentation (in white color) and refined- 
AI segmentation (in red color) models. 
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presence of dental fillings. 
Previously, various studies have developed and validated different 

CNN-based algorithms for automated tooth segmentation [2,4,5,8,12, 
13,18-20]. Although some of the aforementioned studies [2,4,5] have 
reported on the inclusion of teeth with fillings in the testing dataset, a 
lack of information exists related to the number of teeth with fillings. 
Therefore, the actual impact of the artifacts generated by fillings on the 
performance of CNNs is unknown. The present study focused towards 
assessing the influence of artifacts derived from dental fillings on the 
performance of an AI-driven tool by comparing control and experi
mental groups. Based on our findings, the presence of dental filling 
significantly impacted the performance of the AI-driven tool compared 
to the non-restored teeth. However, the observed statistical difference 
was quite low and cannot be considered clinically significant. Addi
tionally, even in the presence of a coronal and/or root filling, the ac
curacy metrics were still higher (95% HD ≤ 0.25 mm; IoU ≥ 0.91; DSC ≥
0.95) than the CNN based automatic tooth segmentation approaches 
reported in the literature [2,4,5,8,20]. The high performance for the 
segmentation of teeth with fillings could be attributed to the fact that the 
training and validation datasets consisted of cases with dental fillings, 
enabling the CNN to learn and deal with these artifacts. Thus, con
firming the robustness of the AI tool for the generation of accurate 3D 

teeth models even in the presence of restorative material artifacts. 
The AI-driven tool tested in the present study was based on a mul

ticlass segmentation approach which has the ability to accurately 
segment the complete dental arch at the same time-point. Previous 
studies [4,5,12,13] have proposed different methods for automated 
tooth segmentation on CBCT scans with CNN’s algorithms. Lahoud et al. 
developed and validated an AI-driven tool for a precise and fast auto
mated tooth segmentation with the application of a feature pyramid 
network [4]. Although excellent results were obtained (IoU=0.87; 
DSC=0.93), the AI-tool was not trained to segment molar teeth. Duan 
et al. proposed a multiclass 3D tooth segmentation technique for tooth 
and pulp segmentation [13]. However, the generalizability of their 
approach is questionable owing to the acquisition of CBCT scans with a 
single device and similar scanning parameters. Recently, Shaheen et al 
[5]. also observed high accuracy of an automated AI-driven tool based 
on a multiclass approach (95% HD=0.56 mm; IoU=0.82; DSC=0.90). 
Nonetheless, the authors failed to assess its performance for the seg
mentation of restored dentition, where the presence of artifacts might 
inhibit optimal functioning of the tool. Thereby, comparison with prior 
evidence was not possible owing to the lack of a standardized approach 
and study design. 

Furthermore, accuracy metrics have been widely accepted as an 
essential aspect for assessing the segmentation quality. However, the 
time required for segmentation has received less attention, which is a 
key factor when considering the clinical applicability of these tools. To 
the best of our knowledge, this is the first study assessing and comparing 
the time required for 3D individual tooth segmentation by manual, AI, 
and R-AI approaches of all types of teeth. The time analysis showed that 
the AI had the fastest performance (mean time: 29.8 s) compared to the 
other methods, and 37 times faster than the manual segmentation of a 
single tooth. 

Regarding the influence of the tooth type on the performance of the 
AI-driven tool, the segmentation of the molars required more re
finements compared to the other teeth in the control group without any 
impact on the tool’s performance. This behavior could be attributed to 
the complex molar anatomy. It is important to highlight that the 
morphological complexity of molars might have influenced the seg
mentation more than the filling material, as observed from the com
parison between both control and experimental groups, which showed 
an even distribution for the type of required correction. Compared to the 
control group, more refinements were required for the experimental 
group irrespective of the tooth type. The performance of the tool was 
lowest for segmenting anterior teeth (95% HD=0.25 mm; IoU=0.91; 
DSC=0.95) in the experimental group compared to premolars (95% 
HD=0.17 mm; IoU=0.94; DSC=0.97) and molars (95% HD=0.19 mm; 
IoU=0.95; DSC=0.97). These findings were in accordance with a pre
vious study [5] which also showed a lower performance of the AI-tool 
for segmenting incisors. The distinct expression of the artifacts gener
ated by high-density materials depending on their anatomical position 
in the dental arch might justify our findings, since the segmentation 
accuracy of the anterior teeth was lower than the posterior teeth in the 
experimental group [21,22]. 

When classifying the quality of the AI-segmentation based on the 

Table 2 
Absolute (n) and relative (%) frequency of teeth that required corrections based on the tested groups (control and experimental) and tooth groups (anterior, premolars 
and molars).   

Control Experimental 
Teeth group No corrections Needed corrections Total p-value No corrections Needed corrections Total p-value 

n (%) n (%) n (%)  n (%) n (%) n (%)  

Anterior 29 (87.9) 4 (12.1) 33 (100) 0.001* 6 (18.2) 27 (81.8) 33 (100) 0.085 
Premolars 38 (95) 2 (5) 40 (100) 17 (42.5) 23 (57.5) 40 (100) 
Molars 26 (65) 14 (35) 40 (100) 13 (32.5) 27 (67.5) 40 (100)  

* Indicates statistically significant association between the tooth group and need for refinement in the control group. 
Statistical power analysis of 0.70 for the control group and 0.95 for the experimental group. 

Table 3 
Accuracy metrics of the automated AI-driven segmentation based on the tested 
groups (control and experimental) and tooth groups (anterior, premolars and 
molars).   

Teeth 
group 

Control Experimental 
Metrics Mean ± SD Mean ± SD  

Anterior 0.03 ± 0.16 Ba 0.25 ± 0.34 Aa 
95% Hausdorff distance 

(HD) (mm) 
Premolars 0.01 ± 0.09 Ba 0.17 ± 0.38 Ab 
Molars 0.08 ± 0.39 Aa 0.19 ± 0.43 Ab 

Intersection over union 
(IoU) 

Anterior 0.98 ± 0.04 Aa 0.91 ± 0.05 Bb 
Premolars 0.99 ± 0.03 Aa 0.94 ± 0.06 Ba 
Molars 0.97 ± 0.04 Aa 0.95 ± 0.04 Aa 

Dice similarity coefficient 
(DSC) 

Anterior 0.99 ± 0.02 Aa 0.95 ± 0.03 Bb 
Premolars 0.99 ± 0.02 Aa 0.97 ± 0.03 Ba 
Molars 0.98 ± 0.02 Aa 0.97 ± 0.03 Ba 

Precision Anterior 1.00 (0) 1.00 (0) 
Premolars 1.00 (0) 1.00 (0) 
Molars 1.00 (0) 1.00 (0) 

Recall Anterior 0.99 ± 0.04 Aa 0.91 ± 0.05 Bb 
Premolars 0.99 ± 0.03 Aa 0.94 ± 0.05 Ba 
Molars 0.97 ± 0.04 Aa 0.94 ± 0.04 Aa 

Accuracy Anterior 0.9997 ±
0.0017 Aa 

0.9952 ± 0.0051 
Bab 

Premolars 0.9998 ±
0.0016 Aa 

0.9968 ± 0.0047 
Ba 

Molars 0.9973 ±
0.0045 Ab 

0.9940 ± 0.0050 
Bb 

Different uppercases mean significant difference between control and experi
mental groups (p<0.05) 
Different lowercases mean significant difference between groups of teeth within 
each group tested (p<0.05) 
Statistical power analysis achieved for all metrics was higher than 0.90, except 
for precision and accuracy, which showed a power statistical analysis of 0.70. 
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time consumed and amount of correction as proposed by Leite et al [3], 
the experimental group presented a higher frequency of minor and 
major corrections. However, the time taken to perform the refinement 
task was still low compared to manual segmentation. Moreover, it was 
not possible to compare our findings with the aforementioned study as 
their AI-driven tool was dedicated for automated tooth segmentation on 
panoramic radiographs. 

The main error observed for the automated segmentation for both 
groups tested was the under-estimation. These results agree with a 
previous study’s findings that also noticed that under-estimation was the 
main error for premolars and molars automated segmentation from 
panoramic radiography images using a CNN-based tool [3]. The lower 
signal to noise ratio, intensity inhomogeneity of CBCT images and the 
lack of definition between the edges of the tooth root and alveolar 
socked might justify the under-estimation observed for the control group 
of teeth in our study [23]. Additionally, to these inherent limitations 
aforementioned, the under-estimation observed in teeth with fillings 
also might be explained due to the expression of hypodense artifacts 
from the fillings that affect the recognition of the voxels that would 
encompass the teeth; consequently, a higher number of false-negative 
voxels was obtained. However, the presence of these errors in 
AI-driven segmentation is not expected to potentially cause adverse 
impacts in a clinical scenario, given that the present AI tool allows re
finements to be carried out in automated segmentation. Based on the 
high accuracy metrics and the low time required to perform the re
finements in the present study, the AI-R method still proves to be a 
clinically efficient method, especially in challenging cases, such as in the 
presence of fillings. 

The present study is the pioneer for clinically proving the robustness 
of an AI-driven tool to perform automatic tooth segmentation even in 
the presence of coronal and root fillings, as seen through the high 

accuracy metrics obtained (e.g. precision and accuracy above 0.99). 
These high accuracy results can be attributed to the constant search for 
more robust computational models based on CNN networks. First, this 
increase of computational knowledge can be justified by the heteroge
neity of training and validating datasets (i.e. different image resolutions, 
FOV size, CBCT devices, and presence of artifacts). Furthermore, the 
current AI-driven tool is constantly supervised by experts in dentistry 
and retrained to provide increasingly accurate results, as shown in the 
present study. 

The proposed AI-driven tool could offer a clinically acceptable 
alternative for tooth segmentation, to be applied in the digital dental 
workflow considering its time efficiency and high accuracy. However, as 
the CBCT dataset was acquired from only two devices, reported results 
should not be overstated or generalized to other devices. Therefore, 
future studies are required to test the performance of the AI tool with 
recruitment of data from different devices. Additionally, it is also rec
ommended to assess the impact of other types of high-density materials, 
such as metallic crowns, orthodontic brackets, and dental implants on 
the performance of the tool. Finally, it is essential to highlight that our 
main aim was to evaluate the influence of fillings on the performance of 
AI-tool to generate 3D tooth models within each type of tooth. Thus, the 
testing sample was composed of different types of fillings common in 
dentistry. For these purposes, our sample showed sufficient statistical 
power ranging from 70% to 99%, the lower value being justified by the 
low variability between the groups tested in specific situations. How
ever, the dataset size used would not allow to compare the AI- 
performance amongst all different types of dental fillings, considering 
that a representative sample of each type of filling within each type of 
tooth should be needed. 

Fig. 4. Mean and standard deviation of time consumed for tooth segmentation according to manual, artificial intelligence (AI), and refined-AI method within each 
tooth group. Different uppercases represent a statistically significant difference between the segmentation methods (p<0.001), and different lowercases represent a 
statistically significant difference between the teeth groups within each segmentation method (p<0.001). Statistical power analysis of 0.99. 
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Fig. 5. Analysis of the quality of AI-driven automated tooth segmentation. A- Frequency of teeth that required correction based on a three-grade scale (no correction, 
minor correction, and major correction) within each tooth group (anterior, premolars, molars). Asterisk (*) indicates a statistically significant association between the 
type of tooth and the need for correction (p<0.001). Statistical power analysis of 0.99. B- Frequency of teeth based on the type of error (under-estimation, over- 
estimation) within control and experimental group. The asterisk (*) indicates statistically significant association between the type of error and the group tested 
(p = 0.02). Statistical power analysis of 0.70. 
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5. Conclusions 

The dental filling materials influenced the AI-driven tool perfor
mance, mainly for the anterior teeth. However, the AI-driven tool pro
posed showed high accuracy metrics and a time-efficient approach to 
provide 3D tooth models from CBCT images regardless of artifacts 
generated by these high-density materials and the type of tooth. 
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